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We consider the problem of multiple scattering of ¥ quanta with energies of 1-5 MeV in media. An
analytical solution of the problem is possible due to the fact that in the mentioned region of the energy,
only Compton scattering contributes to the distribution functions of ¥ quanta and because recoiled elec-
trons may be considered relativistic. We derive asymptotic formulas for the distribution functions of the
momenta of ¥ quanta at distances larger than the y-quantum mean free path length. We consider both

stationary and nonstationary sources of ¥ quanta.

PACS number(s): 13.60.Fz, 32.80.Cy

I. INTRODUCTION

Calculations of y-ray penetration in media are required
in a variety of applications including medical radiology,
industrial inspection, nuclear power plant core and
shielding design, and study of different physical phenom-
ena. Although the elementary processes causing the in-
teraction of ¥ quanta with a medium have been exten-
sively studied both theoretically and experimentally, the
complete description of the interactions is exceedingly
complicated by multiple scattering. On the other hand,
some calculations, for example, the shielding ones, are
often greatly simplified by the use of a buildup factor B,
which was introduced by White [1] and is defined as a ra-
tio of the total energy flux density to the energy flux den-
sity of uncollided photons. A detailed description of
modern numerical methods of calculations of the buildup
factor was presented in a review article by Harima [2].
However, for other applications information about B
alone is not sufficient. For example, atmospheric photo-
chemistry in the presence of an intense source of y radia-
tion is determined by the strong luminescence (brems-
strahlung) of fast electrons that arise as a result of Comp-
ton scattering of ¥ quanta. A study of this problem con-
sists of three consecutive stages: (i) calculation of the
phase-space distribution function f(¢,r,p) of the ¥ quan-
ta, primary and secondarys; (ii) calculation of the distribu-
tion function of the fast electrons and their bremsstrah-
lung, and (iii) calculation of the propagation of the radiat-
ed light through a region where intense photochemical
reactions are taking place. The reactions are determined
by the intensity of the luminescence and, in turn, they
affect its absorption. Performing these computations re-
quires, as a starting point, knowledge of f (¢,1,p).

The following are elementary processes determining
the interaction of y radiation with a medium: (i) the
atomic photoeffect, (ii) coherent scattering ¥ quanta by
atoms, (iii) Compton (incoherent) scattering ¥ quanta by
atomic electrons, (iv) pair production in the fields of the
nucleus and of the atomic electrons, and (v) photonuclear
scattering. A detailed database on these processes is
presented in [3]. As one can see in the database, for all
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chemical elements in a target, there is a region of quanta
energies where the Compton effect cross section is much
more than cross sections of all the other elementary pro-
cesses. It is situated about the region 1-5 MeV. That is
precisely the region that we consider in the present work.
So we can neglect all the elementary processes in compar-
ison with the Compton effect. Besides, at 1-5 MeV we
can assume the free and at rest target electron model for
each scattering interaction, neglecting the kinetic energy
of electrons as well as the influence of the incoherent
scattering function S(q,Z), which takes into account that
the target electrons are bound in atoms. It is necessary to
account for lower energies of quanta [4]. In the present
work we derive the asymptotic distribution function
f(t,r,p) far from stationary and nonstationary sources of
nonpolarized ¥ quanta. Because of the small angles of
scattering of the y quanta, we can neglect polarization
effects. An interesting discussion of polarization effects
arising when photons undergo photoeffect, coherent, and
Compton scattering by atomic electrons, is presented in
[5]. We apply an asymptotic method that uses the
Fourier transformation and analytical continuation of the
Fourier transformation into a complex plane. Calcula-
tions include a contour integration in the vicinity of
singularities [6—8]. Although the calculations are rather
complicated, the results are fairly simple. They are ex-
pressed by Eq. (75) for the stationary case and by Eqgs.
(99)—(101) for the nonstationary case.

The organization of the paper is as follows. In Sec. II
we study the kinetic equation for the distribution func-
tion and obtain its expansion in terms of the number of
Compton collisions. In Secs. III-VI we present details
of the calculation. In Sec. VII we derive the final result
for the stationary case. In Sec. VIII we solve the nonsta-
tionary problem. In Sec. IX we discuss the results.

II. KINETIC EQUATION AND EXPANSION
IN TERMS OF THE NUMBERS
OF COMPTON COLLISIONS OF ¥y QUANTA

Let us examine the kinetic equation for the density of ¥
quanta f(¢,r,p) in the phase space (r,p) corresponding
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to a point, monochromatic, and isotropic source of y
quanta situated at the origin:

%—f:+f)—(p-V)f=(N/4ﬂp2)a(r)8(p—P)+s 1)
where c is the velocity of light, P and N are the momen-
tum and the output rate of generated y quanta, and S is
the collision integral. The latter consists of the input and
output rate components [9]

S=Sin—Sou - (2)
As it is well known,

Sou=ck(p)f , (3)
where

k(p)=[lo(P) ] =0 (PN, , 4)

Iy and N, are the mean free path and the density of elec-
trons in the medium, and o, is the total cross section of
the photon-electron interaction. The value S;, is defined
by the integral

Sw(p)=cN, [dp'f(t,p",0)[doc(p',p)/dp] , (5)

where p’ and p are the momenta of initial and scattered y
quanta at the Compton recoil, do - /dp is the differential
cross section for the Compton recoil of the ¥ quantum
(10]

doc(p',p)=M(p',p)d mec+p’—%—p dp, (6)
M(p',p)=m(p',p)=(m,cr}/2epp")U(p’,p) , (7
2
Up',p)= |E+L | +mZ? i—-i,
p p p
—2m,c l———l,— , (8)
p p

€ is the energy of the recoiling electron, and m, and r,
are the mass and the classical radius of the electron.

We consider the stationary case when N and f in Eq.
(1) do not depend on ¢, so that df /9t =0. For that case,
let us consider the Fourier transformation of the function

S
F(k,P)=fe"‘"f(r,p)dr. ©)

Equations (1)-(9) yield, for the function F(k,p),

(K—ip_lkp)F(k,p)

=(N,r3m,c?/2ep)
’ ’ ' € r—1 '
X F(k,p")U(p',p)8 |m,c+p —p—_|p dp
+(N /4mp2c)8(p —P) . (10)

Hereafter, it is convenient to adopt the system of units in
which
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c=1, m,=1, 27N, r3=1, (11)

so that the values «,k,p,r,/, are dimensionless. Howev-
er, in our final results we revert to the primary system.
Next, we represent the solution of Eq. (10) as

F(k,p)= 3 F"(k,p), f(r,p)=3 f"(r,p), (12)
n=0 n=0
where
FOk,p)=[N /4m(kp —ik-p)p]8(p —P)
=(N/47r)f0 exp[ —(kp —ik-p)§]
X8(p —P)dE&/p , (13)
F'"(k,p)=[1/4m(kp —ik-p)e]
XfF(”””(k,p’)U(p',p)
X8(1+p'—e—p)dp'/p’ . (14)

The expansion can be viewed as an expansion in the num-
bers of the Compton collisions of ¥ quanta: Eq. (13) is the
contribution of the nonscattered ¥ quanta and the terms
in Eq. (14) are the contributions from the quanta that
have been scattered n times. Applying (14) n times and
taking into consideration Eq. (13), we obtain the result
(detailed calculations are presented in the Appendix)

__Np?
(47T)n+lP2

X [ TI (U1, 18(p—P,)
m=1

F(")(k,p):

X I1 {expl—(k,,p, —ik-p,)]
m=0

Xdp,, /pk} (15)

provided the direction of the momenta p,, coincides with
that of the vector p,,, where p,, is the momentum of the
v quantum after the mth scattering. We recall that the
directions of the vectors p,, (or p,,) fix all the values p,,
(at the definite value po=P). In Eq. (15) we use the nota-
tion «,, =«(p,, ).

The inverse Fourier transformation of Eq. (15) yields

£, p)=(4m) " "Np*P I , (16a)
I= [ II (UGp-12)18(p—p,)8 [1— 3 po
m=1 m=0
X II [exp(—Kupp)dp, /P, ] - (16b)
m=0

For n =0, Eq. (16) yields the expression for the Fourier
transform of the function Eq. (13)

FOr, p)=N(4mr?)~le <)y p—P§ 17

In light of this solution, the result expressed by Eq. (16) is
almost as obvious as the consequence of n successive
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Compton recoils of an initial ¥ quantum radiated by the
point source, so that the vectors p,, are the mean free
path of the quantum between the mth and (m + 1)th col-
lisions.

Equations (15) and (16) can be simplified in the case

p>>m,c? (18)
or, in terms of (11),
p>>1. (19)

Under this condition, we can approximate the expression
for U(p,, _1,P») [Eq. (8)] as

"Up,,—15Pm)=2exp(p, L1 —p 1) (20)

[to an accuracy of (p,; 1 ; —p,, 1)2<p ~?]. Consequently,

n

11 (Upyp—1:Pm )]=2"exp(P<_1—p -,

m=1

(21)

To simplify further calculations, we introduce the distri-
bution functions

finp)= [ fr,pplde,, (22)

Fy(k,p)= [F(k,plp?dQ, (23)

instead of the functions f(r,p),F(k,p); d (3, is an element
of a spatial angle of p, while the index 1 reminds us that
the functions are one-dimensional distributions. Of
course, with the functions (22) and (23), we lose informa-
tion about the distribution in the direction of the momen-
tum p, but the latter, as we show below, is trivial at
r— oo under the condition Eq. (19). The functions (22)
and (23) can be presented in a form of expansion analo-
gous to Eq. (12). Equations (15), (16), and (21)—(23) yield

S{(,p)=[Np*P 2 /2(2m)" " Jexp(P 1 —p 1)

X [8(p—p,)8 1= 3 p,
s=0
X 11 (exp(—Kkppm)dp, /o5 ],  (24)
m=0
T 2
F(n) k, =__LVB__ l__l_
i (k.p) 22+ ip2 P P T

X [8(p—p,) II [exp(—Kpppm +ik-p,,)

m =0

Xdp,, /p2] . (25)
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III. CALCULATION OF THE FUNCTIONS F{»

To calculate the multidimensional integral (25), let us
specify the expression

dpm

2
m

exp(—k,,p,, tik-p,,)

=exp(—K,,Pm ik pnzy, )dp,,dQ,, , (26)

where z,,, are the cosines of the angles between the vec-
tors p,, and k and d(),, are the spatial angles of the vec-
tors p,,. Further calculations are simplified considerably
if we adopt the approximation

Zxm —Zk0 H (zs,s—l) ’ 27)

s=1
where z,, ,,, _; is the cosine of the angle between the vec-
tors p,, and p,, ;. This approximation means that we
substitute z,,, by its mean value, an approximation that
we call an ensemble average. The validity of the approxi-
mation and corrections are discussed in Sec. V1.
Because of (19) and the relation

Zym—1=1= (P ' =P ') 5 (28)
we may adopt the approximation

m

Il (z,s—D=exp(P~'—p, ") . (29)

s=1

Integrating over all dp,, on the right-hand side of Eq.
(25) and taking into account Egs. (26)-(29), we may
rewrite Eq. (25) in the form

T 2
Fg">=—12‘—’1§2-exp(rl—p—‘)

X f&(p —D,)

I

n
X 11 [xm—ikzk’oexp
m =0

SRS

1_
P

n
Xdzkyo l_I (dzm’m _1) . (30)
m=1
Let us change variables of integration and write
X =P | (31)
instead of z,, ,, _; (28). Using the notation
X=pP ', x=p7', 32)

we rewrite Eq. (30) as
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N 1 dzy o
n) k X 3
(kp) =" prexpl ==, [k(X)— ikzy o [k(x)— ikzy gexp(X —x)]
dx, _
X f n—1
Xp—1 _’kzkoeXP(X X, —1)]
m= m dx,,
>< f +1 :
me=n—2 |"X [x(x,, ) —ikzy gexp(X —x,,)]
=(N /2PY)exp(X —x)f_lldzk,og[K(X)—ikzk,()][K(x)—ikzk,oexp(x —x)]) !
n—1
X[(n—1)01]7! 1f;[x(y)—ikzk’0exp(X—y)]ldy J . (33)

As we show below, the asymptotic behavior of the function f(r,p) at » — o is determined by a singularity of the func-
tion F,(k,p) in the complex k plane at k =ik(X) (because of isotropy, the functional f, F; depends only on the modu-

luses of the vectors r,k).
z o= —1and k=ik(

It is clear that the inner integral in Eq. (33) has a logarithmical divergency at lower limit if
X). To extract the divergent part of this integral we present it in the form

—f;[K(y)—-ikzk’oexp(X —y)]_ldy=[K'(X)+K(X)]*lln{g(X,x,kzk’o)[K(X)-—ikzk,o]_l} . (34)

It is obvious that g(X,x,kz, () is an analytical function at k =ix(

present Eq. (33) in the final form
N exp(X —x)
)'2P2[K’(X)+K(X ]!

X)—ikzy o ][x(x)

F{(op) =

><f

We recall the Eq. (35) is obtained under assumptions (27)
and (19).

IV. CALCULATION OF THE SINGULAR PART OF F,

As follows from Eq. (17), at p <P, the functions
£9r,p) and F'Ok,p) do not contribute to the expan-
sion Eq. (12), so we consider instead

0

_f(O)(r,p — z f n) l',p (36)

n=1

fi(r,p)=f(x,p)

(k,p)—FP(k,p)=3 F"(k,p), (37

n=1

F,(k,p)=F

which coincide with the functions f,(r F,(k,p) at
p <P. Let us substitute Eq. (35) into Eq. (37). After sum-
mation, we obtain the result

F,(k,p)=[N exp(X —x)/2P*1M (38a)
M= [ (k0 —ikz ][x(x)—ikz]} !

X {g(X,x,ikz)/[k(X)—ikz]}%dz ,  (38b)
g=[k(X)+x'(X)]7 . (38¢)

As we show below, the asymptotic behavior of the func-
tion f,(r,p) at r— oo is determined by the lowest singu-
larity of the function F,(k,p) in the upper half plane of
the complex k plane. From Eq. (4), it is obvious that «(x)
is a monotonical increasing function of x =(1/p) in the
domain interesting for us. Thus the lowest singularity of

—ikzy gexp(X —x)]}ﬂ(ln{g(X,x,zk'o)/[K(X)—

X) if zy o= —1. Taking into account Eq. (34), we

l.kzk’o]} )nvldzk’o . (35)

f

the function F,(k,p) in the upper half plane of the com-
plex k plane is situated at k =ix(X). The singularity
originates when we integrate Eq. (38) in the vicinity of
the lower limit. The main singular term of the function
Eq. (38) at k =ik(X) is

singF, (k,p)={N[«(X)+k'(X)]/2P?
Xk(X)[k(x)—k(X)exp(X —x)]}H , (39a)

H=exp(X —x)[go(X,x)/k(X)+ik ] (39b)

8o(X,x)=g[X,x, —ik(X)] . (40)

From the definition Eq. (34), we obtain
8o(X,x)=[k(X)+«'(X)](x —X)exp[I(X,x)] , (41)
where
IX,x)= [ {[k(X)+x'(X)]
X [k(y)—k(X)exp(X -] !
—[1/(y —X)1}dy . (42)

V. THE LEADING ASYMPTOTIC TERM
OF THE DISTRIBUTION f,

To calculate the distribution f,(r,p), let us invert the
Fourier transformation of f, [whlch has a form analo-
gous to Eq. (9)], taking into account the isotropy of the
functions f,(r,p) and ﬁl(k,p), i.e
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Fie,p)=Ff,(r,p), F (k,p)=F,(k,p) . (43)
We obtain
Fitrpy=@ar®)™" [ “F\(k,p)k sin(kr)dk
=—(i/an%r) [ _wwﬁl (k,plexplikr)k dk . (44)

It is worth noting that the last expression in Eq. (44) is
valid if the function F(k,p) is continued analytically into
the negative axis k so that

F\(—k,p)=F,(k,p) . (45)

This condition is fulfilled if we realize the analytical con-
tinuation of the function F,(k,p) into the complex plane
k as

F‘l(k,p)=(47r/k)fowfl(r,p)rsin(kr)dr . (46)

In Eq. (44) we may lift the contour of integration up to
the lowest singularity (branch point) of the function
F\(k,p) in the upper half plane of the complex k plane,
which is situated at k=ix(X). If we lift the contour
higher, we must go around, without crossing, the cut of
the function F,(k,p), which begins at the branch point

1 2zt
fexp(—ik~p,, )dﬂn=2f_ldzn,n_1fz_ dzy,exp(—ikp,zy, [ 1—z},

where

Zi:Zk,n —lzn,nﬁli[( 1 _Zr%,n -1 )( 1 _Zi,n*l )]1/2 . (49)
The definitions of z,, and z, , _, are given after Egs. (26)
and (27). The inner integral in Eq. (48) can be calculated
exactly with the result

fexp(*-ik-p,, )dQ,
=2m [ Jolkp,[(1=22, ) )(1=2}, )]')
Xexp(_‘ikpnzn,n~lzk,n—l)dzn,n-‘l ’ (50)

where J(y) is the Bessel function. If the argument of the
Bessel function is much less than unity in the domain
that contributes the most to the integral Eq. (25), one can
take Jy(y)=1 and the result Eq. (50) implies that the
ensemble-average approximation Eq. (27) is valid. To ob-
tain corrections to this approximation, one needs to sub-
stitute the ensemble-average values of p,,z, , 1,2y n—1
into the argument of the Bessel function in Eq. (50).
After the substitution, the Bessel function in Eq. (50) be-
comes a constant and may be brought out of the integral.
Analogously, in Eq. (25) one can integrate over all dz,,,,.
Then, the total correction to the ensemble-average ap-
proximation for the function F{" (k,p) is expressed by the
factor
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k=ik(X) and which we can chose to direct along the
positive direction of the imaginary k axis. At r— o, the
main contribution to the integral is concentrated near
k =ik(X) [6—8]. Taking into account the rule mentioned,
we substitute the expression of Eq. (39) into Eq. (44) and
obtain the result

Firp)=(N /47PX2)ft | (472)
=T+ k(x)exp(x —X)—k(X)] ™!
Xexp[ —«(X)r][go(X,x)r]?, (47b)

where g is defined in Eq. (38c). For the derivation we
have used the formula

fC[K(X)-Hk]_"e"k’k dk

=27ie "X X)r""1/T(v)] . (47¢)

V1. CORRECTION TO THE APPROXIMATION
OF THE ENSEMBLE AVERAGE

Now let us return to the multidimensional integral (25)
and consider the inner integral [exp(—ik-p,)dQ,,
which can be calculated as

52 52 172
Zn,n-l zk,n—l+22knzn,n—-lzk,n-—l] > (48)

Z"W= 1T JolkR,,[(1—22 - N1—22, _)*]'7%),

m=1
(51)

where

n m’
Rm=zr;,3n—l 2 Pm’ H zm",m"—l (52)
m'=m m'=m
and Em,fm,m-l,fk,m_l are the ensemble averages of
R,.,znm—12k,m—1- From Egs. (28) and (32) it follows
that

Zom—1=1—(X,, =%, 1) . (53)
In the singular term of F{"
we have the equalities

, as it has been stated above,

k=ik(X), (54)
Zro=—1. (55)

In the ensemble-average approximation from Egs. (25),
(27), and (29) we have the formulas
m
Ek,m :Ek,o H Em’,m’—lzexp(X—_xm ) ’ (56)
m'=1



P =[K(%,) (X0, ]!
=[k(%,, ) —k(X)exp(X —%,,)] . (57)

From Eqgs. (51)-(57) it follows that to compute the factor
Z'™ it is necessary to compute X,,. To that end, we ap-
peal to Eq. (33), taking into account the notation of Egs.
(34) and (40) and the fact that the main contribution to
the contour integral (44) is generated at
|kK(X)—ikzy ol ~r~150. As a result, we obtain

In[rgo(X,X,,)1=(m /n)in[rge(X,x)], m=1. (58)

If Eq. (18) is satisfied, then X <x <<1 and so I (X,x)<<1,
in accordance with Eq. (42). Then, Egs. (41) and (58)
yield

X, —X={1/[k(X)+Kk'(X)]r}exp(mL /n) , (59)
where
L=In{r[x(X)+k'(X)](x —X)} , (60)

Now, from Egs. (52), (25), (53), and (29) under condition
(18), we have

R,~ S pm= 3 [k(X,,)—Kk(X)exp(X —%,,)] "
=~{l—exp[—(n —m +1)L/n]}

X{[k(X)+K'"(X)](X,, —X)
X[1—exp(—L/n)]}7 !, (61)

(I—Erfz,m—l )(l—flzt,m—l)
=~4(X,,

=4(%,, —X)*[1—exp(—L /n)]exp(—L /n)

_fm~1)(fm—1_—X)

(62a)
(62b)

atm=>2,

(1—7%,0)(1—210)%0 .
From Egs. (51), (61), and (62), we find Z" at k =ik(X):

Z(n)=Y(n)K:~1 , (63)
where
K, =Iy{[exp(L/n)—1]1"122k(X) /[k(X)+&'(X)]} , (64)
YW= [T (1/K,)I, [[exp(L/n)—l]"/2

m=2

n—m+1L
n

X

1—exp

X2k(X) /[ k(X)+k'(X)] ] , (65)

and I,(y) is the Bessel function of imaginary argument.
We notice that in the product (65) we may calculate only
several terms near m =n as the others are of order unity.
When summing Eq. (37) over n, we are interested in Z '™
at |n —7i| <<7, as the sum is contributed by terms with
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|n—m|~(7)/?2<<7. At that n, we have
zZW=g"" 1y, (66)
where we have used the notation
Y=y", K=K, . (67)

Taking into account the correcting factor Eq. (66) and
the condition [K(X)—ikzk’0]~r_1, from Egs. (35) and
(37), we obtain
KL

A=———— 68

TR (X)) (68)
where L is given by Eq. (60). From Egs. (64)—(68) it fol-
lows that

(X)+K'(X) —iz
= K(X)+'(X) | _
K_IO €Xp % ] 1
X26(X) /[k(X)+K'(X)] ] , (69)
n—1 ,
Y= [ (1/K)I, {2;(()() 1—exp _m%ﬂl
m=1

X

-172
kK(X)+e'(X) |
P K

X[w(X)+«'(X)]! ’ . (70)
In the product Eq. (70) it is sufficient to retain only
several terms near m =1 as the others are close to unity.
Taking into account the correcting factor Eq. (66), we
can correct the results Eqgs. (39) and (47) as

f1(r,p)=(YN /47r’P?)f} , (71a)
-1
* Kk
A L b K(X)+K'(X) ] }
Xk(x)exp(x —X)—«(X)] ™!
X [rgo(X,x) 1K/ IO+ KX Y exp[ —k(X)r] . (71b)

VII. FINAL RESULT
FOR THE DISTRIBUTION FUNCTION f,
IN AN ARBITRARY SYSTEM OF UNITS

We recall that (71) is valid in the special system of
units Eq. (11). To rewrite it in an arbitrary system it is
convenient to present the value «(P) [Eq. (4)] in the form

k(p)=k(x)=0(p)N,=27riN,y(x) , (72)

where in the arbitrary system, the definition Eq. (32) be-
comes

X=(m,c/P), x=(m,c/p). (73)
For the Compton collision [10]
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y(x)=(oc/2mrf)

2(2+x)(1+x) —(3+x)
(24+x)?

2+x

+%x[1-—2x(1+x)]ln (74)

Let us rewrite the result Eq. (71) in the arbitrary system
of units, accounting Eq. (41),

fi(r,p)={Yr3N,NX2/2T[1+(K /7)]rm,c?}
Xexp[(X —x)+7 'I(X,x)]
X [7(x —X)27N,r3r (K71
Xexp[ —«(X)r], (75)
where

7=y(X)+y'(X) .

In the arbitrary system of units, the values K, Y have the
form of Egs. (69) and (70) with the substitution
k(x)—vy(x). At p=P, Eq. (75) is substituted with the

noncollision contribution
FO=(N /4mr2c)exp] —k(x)r18(p —P) . (76)

Let us consider a numerical example. Let P=5 MeV.

Then
X=0.1, y(X)=0.16, y'=1.09,
K=~1.09, Y=0.95.

Using this result and Egs. (75) and (76), we calculate the
buildup factor B defined as a ratio of the total energy flux
to the energy flux of uncollided quanta. The result is

B=1+0.6(r/1,)°"% .

We plot this result in Fig. 1 versus the numerical result of
[2] for water.

VIII. THE NONSTATIONARY CASE

Let us study Eq. (1) with N dependent on time and find
its propagator. Then

100

0.1 1.0 10.0 100.0

r/ls

FIG. 1. Buildup factor B at P=35 MeV calculated by using
Eqgs. (75) and (76) (solid line) versus the numerical result of [2]
for water (crosses).
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finp={"

where the propagator g(z,r,p) is the solution of the equa-
tion [in the system of units of Eq. (11)]

N('r)g(t—r,r,p)dr s 77

P.
az+ -Vg +k(p)g
=(4mp?)18(2)8(r)8(p —P)+S,,(p) (78)

and S, is analogous to the expression Eq. (5) with the
substitution of f with g. If in Eq. (78) we Fourier trans-
form the function g,

G(w,r,p)=f_w g(t,r,ple “dt , (79)
the function G(w,r,p) satisfies the equation

[ia)+K(p)]G+§—-VG=(1/41rp )8(r)5(p —P)+S,, ,

(80)

which coincides with the stationary equation (1) with the
substitution of G, «, and 1 with f, k+iw, and N, respec-
tively. Through these substitutions, we can obtain
G,(w,1,p) [which is defined quite analogously to the

functlon f1(r,p)] from the result of Eq. (75). The result
is
G,(w,r,p)=(YX?/47r)G} , (81a)
G} ={T[1+K/(R+iw)]} !
X [(R+iw)(x —X)r] K/ FHio)=1]
Xexp{X —x —[k(X)tiwlr}, (81b)
k=k(X)+k'(X) . (82)

Now we are interested in the inverse Fourier transform

gl(t,r,p)=(1/27r)fj° G lw,1,ple®dw , (83)

where the functions G (w,r,p),g,(t,r,p) are defined in
analogy to Eqgs. (22) and (23). Substituting Eq. (81) into
Eq. (83), the result can be presented as

g t r,P ¢1(t rT ,P (84)
where
¢, 1, p)=(87%?%) 14 , (85a)
A=exp[X —x —k(X)r]
-1
X
f K+la) }

X[(R-Hw)(x _X)}[K/(R-f-iw)—l]

Xexp[l(w)]dow , (85b)
l(w)=ioT+K In(r)/(Ft+iw) . (86)

The arrow in the Eq. (85) means that the integral is calcu-
lated along the real axes in the complex w plane. As the
integrand in Eq. (85) has no singularities in the lower w
half plane, we can lower the contour of integrating. If
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7<0, the integrand decreases exponentially and we ob-
tain

¢1(T,r,p)=

To perform the integration in Eq. (85) when 7> 0, we can
use the saddle-point method as we have the large parame-
ter In(7) in the expression for /(w) Eq. (86). The neces-
sary condition for the saddle point /'(wy)=0 yields
w,=ikFi[K In(r)/7]"/2. If we take the lower sign in this
expression, the saddle point turns out to be located below
the singularity of the integrand at o =ix. We adopt

oy T)=Iik—i[K In(r)/7]'/2 . (88)

0 at 7<0. (87)
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From Egs. (84)-(86) and (88), we obtain the following
values of the parameters of the saddle-point method:

ly(r) =l wy(7))=—Rr+2[7K In(r)]'/? , (89)

172
7.3

K In(r)

I"(@g)=—2 (90)

Performing the standard saddle-point calculation of the
integral Eq. (85) and taking into account the values of
the parameters Egs. (88)—-(90), we obtain the result

é,(7,1,p)=(YX2/87 2 r?)exp[ X —x —k(X)r ](I‘{1+K/[K+two(7')]})

X {[R+iwq(r)](x — X)) K/ FT eI

The result is valid if the following conditions are fulfilled:
[ ()|l (w)|"? << 1 for n>2, (92)

where ['"(w) is the nth derivative of the function /(w).
From Egs. (86), (88), and (92), one can obtain the condi-
tion

[7K In(r)]? M <<1,

which yields the following domain of validity of the result
Eq. 91):

>>[KIn(r)] 7! (93)

As the exponent [,(7) in Eq. (91) contains the large pa-
rameter In(r) [see Eq. (89)], we may approximate this re-
sult by the Gaussian function. With that end in view, we
find the position 7, of maximum of the function /y(7) Eq.
(89),

To=(K /&*)In(r) . (94)
From Egs. (88), (89), and (94), we further obtain
wo(79)=0, (95)
lo(19)=(K /R)In(r) , (96)
10(1'0)=—%[R /K In(r)] . 97)

Using these results, we obtain the Gaussian approxima-
tion of the function Eq. (91), that is

é,(7,1,p)=(YX2 /87 ?)[T(1+K /&)]™

X[®r(x —X)]'KF K In(r) /&%) 172
Xexp{X —x —x(X)r
—[®*/4K In(r))(7—70)%} . (98)

Examination of the applicability of the Gaussian approxi-

[K In(7) /73] *exp[ly(7)] . (91)

r

mation to the function of Eq. (91) yields a positive result.
Indeed,

)| (7o) "V ~[In(r)]' ™27 <<1 for n>2 .

The result (98) has been obtained in the system of units of
Eq. (11). To move to an arbitrary system of units, let us
present the results of Egs. (77), (84), and (98) in the form

(t,1,p)= fN nlt—t'—r/c —(K /27N, ric7?)
XIn(27N,r2r))dt’ (99)
and
() =(YX2 /87 %rm,c3)m* , (100a)
N*=[7(x —X)2aN,ri X7 U T (1+K /7)) !
X[73/K In(27N,rdr) ] %exp[Q (r,1)] , (100b)
Q(r,t)=X —x —«(X)r—[7°/4K In(27N,rr)]
X(t2/4m*N2ric?) , (101)
where x, X, Y, K, 7, and k(X) are given by Egs. (73), (70),

(69), (74), (75b), and (4).
have

For p =P, instead of Eq. (99) we

( —r/c) e K

X)ra( —P).
4mric P

FO,r,p)= (102)

IX. DISCUSSION

The main result of this paper is the distribution func-
tion f(z,r,p) in a dense homogeneous medium for y
quanta radiated by a point monochromatic source. The
results are presented by either Eq. (75) and/or (76) for the
stationary problem or Eqgs. (99)-(102) for the nonstation-
ary case. The distribution functions are normalized as
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[ rrnpdp=ntr,, (103)
where n (r,t) is the density of the ¥ quanta.

The distribution function is formed by multiscattering
of ¥ quanta in the medium and the results are valid pro-
vided the distances r are larger than the mean free path.
Let us recall that the function f is not the complete dis-
tribution in the momentum p, but as it follows from the
definition Eq. (22), it is only the one-dimensional distribu-
tion in p and as such, it contains no information about
the angle distribution in the direction of p (the index 1 of
f1 reminds us of this fact). We have calculated the func-
tion f,; rather than f because, on the one hand, this
simplification is instrumental in allowing an analytical
treatment and, on the other hand, the angular part of the
distribution, as it turns out a posteriori, is very simple.
Indeed, Eqs. (18) and (28) imply that, at each recoil, the
momentum of a ¥ quantum changes direction only slight-
ly. As recoils are statistically independent, from Eq. (28)
one concludes that the mean value of the angle between
the vectors r and p is

10°~1—z=mc(p~'—P7") (104)
(if one uses an arbitrary system of units) and

[(z—2))2=(me/m)p '—P~ 1), (105)
where 7 is the mean value of a number of recoils

7=(K/7)n[27riN,yr(x —X)] . (106)

F(n)(k,p)_-_-N(47T)—(n+l)P—2
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Because 7 — o« as r increases, Egs. (104) and (105) imply
that the momentum of the final ¥ quanta p at the point r
is directed in the vicinity of a conic surface, provided the
axis of the cone is directed along of the vector r; an angle
included between the axis and generatrix is given by Eq.
(104).

It is clear that if the source of the ¥ quanta is not a
point source and is not monochromatic, the distribution
function can be easily obtained by a proper convolution
integral of the function f;. Our result can be extended
also to the case when the medium is nonhomogeneous.
In this case, the electron density is a function of r [i.e.,
N,=N,(r)] and one should make the substitution

,
Ner—>f0Ne(r’)dr , (107)
where the integration is performed along r as the ¥ quan-
tum propagates in vicinity of this line. Let us recall once
more that all our results are valid in the interval of the
energy of the ¥y quanta (1-5 MeV), where, on the one
hand, Eq. (18) is fulfilled and, on the other hand, the
scattering ¥ quanta are contributed mainly by Compton
scattering.

APPENDIX

We derive Eq. (15). Applying Eq. (14) n times (starting
from n=1) and taking into account Eq. (13), we obtain
the expression

xJ -+ J @p,)5(p=p,) [fo""exp{(ik.pn—xp,,)g,,}d§,, 8(po—P)

m=1

X (empm—l)_lU(pmwl’pm )8(1+pm-1_em —pm)

Il

m

X [ [ expl =Pt =KD 1JdE s |dBp 1),

(A1)

where we have adopted the notation of (17). Let us transform the variables of integration as

PmsEm )= DmsPm =EmPm) -

(A2)

As the vector p,, is parallel to p,,, the substitution of (A2) into the spherical coordinates is equivalent to the substitu-

tion

Pms&m )= PmsPm =EmPm) -

(A3)

Obviously, the Jacobian of the transformation (A3) is equal to p,,. Next, we can integrate all 8 functions in Eq. (A1) us-

ing the rule
f8( 14+p, 1= €m —Pm )P =€nPm /Pm—1 >
which can be derived from the conservation equation
Pm—1=Pm tPem
and the relation

€n=(1+p2,)1"% .

(A4)

(AS)

(A6)

In Egs. (AS5) and (A6), p,,, is the momentum of the recoiled electron in the mth Compton recoil. After substitution of

(A2) and the rule (A4), Eq. (A1) yields Eq. (15).
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